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Abstract .-Corporate inventory systems have historically had a greater spatial  and
temporal  intensi ty than is  common in the public  sector .  For  many corporat ions,  these
inventory systems might  be descr ibed as  dynamic in  that  current  es t imates  rely on a
small amount of recent data and a large amount of information resulting from the
imputat ion of  older  data that  have been subjected to various growth and mortal i ty
models. Usually the “best available” models are used for this purpose, with little
attention paid to any populat ion dynamics that  may have occurred since development
of the models. This paper gives the theory and an example application of a family of
sample designs that  possess  cont inuous forest  inventory (CFI)  at t r ibutes .  This  family
of  Pseudo-CFI sample designs was devised to faci l i ta te  the incorporat ion of  a
continuous monitoring and cal ibrat ion mechanism for  the imputed data.

I t  is  important  to  industr ia l  forest  enterprises  to  know
what is  and what will  be on the ground (by a wide array
of measures) at any given point in time. For this reason,
corporate  inventory systems have his tor ical ly  had a
greater  spat ial  and temporal  intensi ty than is  common in
the public sector.  For many corporations,  these systems
might be described as dynamic in that  current  est imates
rely on a small  amount of recent data and a large amount
of imputed data values based on older data that  have been
subjected to a growth model.  Usually the “best  available”
growth and yield models are used for this  purpose,  with
l i t t le  at tent ion paid to the appropriateness of  the models
for specific applications. Unfortunately, industrial forest
populations are themselves quite dynamic and ever more
frequently prove to be quite different  from any of those
upon which existing models were built. Furthermore, we
can expect this trend to continue indefinitely.  Therefore,
i t  would be prudent  to incorporate a  continuous monitor-
ing and cal ibrat ion mechanism into the inventory system
in order  to provide the abi l i ty  to adapt  to changing
condit ions and populat ions.  This  paper presents  a  family
of sample designs,  which l ie between periodic inventories
and continuous forest  inventories with respect  to the
variance and cost  scales.  An example application is  also
included. Because the designs are obtained by relaxing
the requirements of  continuous forest  inventory,  these
designs might  be dubbed Pseudo-CFI.

Much work has been devoted to s tudying the continuum
along which different  methods of  scientif ic  inquiry could
be posit ioned with respect  to the level  of  control  over
responses (Basu 1980; Cochran 1965; Cochran and Rubin
1974; Rubin  1973a, 1973b,  1974, 1976a,  1976b,  1978,
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1979, 1980, 1986; Wickramarante and Holford 1987;
Wold 1956). The subject was briefly introduced into the
forestry l i terature in a discussion of forest  response
studies by Green and Roesch (1993). A major premise of
this  paper is  that  there is  a  point  at  which observational
forest  inventory data can begin to overrule the results  of
controlled growth and yield experiments. Here, we show
how one might exploit that premise in the design of a
dynamic inventory system.

Arguments for strict experimental control in growth and
yield est imation and for  the use of  the less  control led
cont inuous forest  inventory (CFI)  approach both rely on a
very basic truth about random variables.  That truth is  that
the variance of the difference between two random
variables (A and B) is:

Var(A - B) = h-(A)+  Var(B)  - 2 Cov(A,  B)

If we let A equal time 2 volume and B equal time 1
volume, we see that A-B equals volume growth. Both
controlled experiments and CFI plots attempt to maximize
the third term on the r ight-hand side (rhs)  of  the equat ion,
2Cov  ( A, B) , by measuring time 1 and time 2 volumes on

the same population elements.  This results  in a decrease,
of course,  on the left-hand side (0~s)  of  the equat ion.
Control led experiments go one step further  by also
reducing the first two terms on the rhs.  This is accom-
plished by control l ing the populat ion elements  enter ing
the experiment to a particular subset of the population of
interest. That is, the point of an experiment is to deduce
the effect  of an action, and in order to do that one tr ies to
el iminate potent ial  noise factors .

A potential  weakness of the experimental  design approach
is the assumption that  an effect  measured on a very
control led subset  of  the populat ion is  going to  be the same
as the effect  on the entire population.  Unfortunately,
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noise is  reali ty,  and when one el iminates noise,  one may
also be eliminating major segments of the population of
interest  and their  corresponding differences in response.

This  real izat ion in other  industr ies  has given r ise to such
areas of study as process control,  updating, and calibra-
tion techniques. In forestry, the term “localizing” is often
used in reference to adapting volume and/or growth and
yield functions to local data. Variations of this approach
have been labeled “adaptive growth modeling” by some.

PSEUDO-CFI

Let’s  consider a  continuum of control  and information
with respect  to growth and yield studies.  We would
observe the fol lowing relat ionships among condit ional
covariances between time 1 (n) and time 2 (T2)  data,

Cov(q  , q IPI)  Co&  , TICFI) Cov(T2,  T, IEGP)

where:
PI = periodic inventories
CFI = continuous forest  inventories
EGP = experimental growth plots

Similarly, the conditional variances would be ordered,

Naturally,  the advantage of the higher variance methods is
that the costs are ordered:

Cost(PI)  Cost(CFI)  Cost(EGP)

Realistically, the major driver of the level of effort in
industrial  forest  inventories is  cost .  What are needed are
lowest  variance est imates obtainable for a given budget.
Because some efforts to increase the covariance between
time 1 and time 2 attributes will be inexpensive relative to
the amount of increase, while others will not, it is
worthwhile to seek an optimal point along the covariancel
cost function. Note that it is unlikely that this optimal
point falls at either extreme. Therefore, industrial
inventories  should benefi t  f rom the judicious inclusion of
CFI features. It is not widely acknowledged that this is
possible because the above scales are continuous,  and the
periodic inventories would not  have to conform exactly to
strict CFI specifications. Hence, we arrive at PSEUDO-
CFI, defined as the family of sample designs that lie
between periodic inventories and continuous forest
inventory,  obtained by formally relaxing the requirements
of CFI,  hopefully in a manner that  nets  the greatest
decrease in cost for the least increase in variance.

Although the term “continuous forest  inventory” or  “CFI”
has been appl ied to many different  designs,  most  have a
common set of elements:
166

1 . Permanent  sample points  are used,
2 . Regularly scheduled remeasurements are made,
3 . Individual trees are stem-mapped, and
4 . A reconciliation of sample trees with those existing at

the previous measurement is  made.

All these elements could be relaxed in different ways,
although some would contr ibute to such an increase in
variance that “borrowing” from CFI would be of little
worth .

There are many ways in which the first requirement, of
using permanent sample points, might be relaxed. This
allows a range of choices with respect to cost  per unit
variance reduction. (Of course, the result of eliminating it
completely would be a periodic inventory). It is expected
that  most  useful  des igns  wi l l  be  somehow re la ted to  a
permanent list of points. For instance, we could have a
permanent list of sample points but not require exact field
relocation of  al l  (or  any) of  the points . Because the cost
of approximate relocation of point center is low, while the
cost for exact (or very small tolerance) point center
location can be relat ively high,  i t  could be advantageous
to formulate a sample design and the corresponding
estimation system for particular levels of relaxation of the
relocation requirement. One idea would be to limit the
search time for point center once the general location has
been reached. When the limit is exceeded, the data could
be taken at  the “best  guess” point  location.  Alternatively
a requirement might  be set  that  each point  must  be located
within +/- a maximum distance, such as that achievable
through a geographic posi t ioning system. A workable
plan would be to require that  x percent of  the points be
relocated to within a very small tolerance, while the
remaining (100-x) percent of the points be relocated to
within a larger tolerance.

As with the point relocation requirement, there are many
ways in which the regular timing requirement could be
relaxed. Feast or famine cycles could be allowed in
timing of measurement periods. This would be attractive
to landowners that  experience f luctuations in business
activi ty.  These types of  businesses would benefi t  from
being able to collect  most  of  the data while adequate
revenues are being generated. Related ideas include
allowing different  interval  lengths between measurements
based on a priori ty classif icat ion,  or  devising a temporally
defined subsampling scheme.

Another aspect of CFI,  which could be relaxed to various
degrees, is the rigor with which sample trees are identified
for future relocation. Often trees are both physically
marked and their locations are entered into the database.
At each successive visi t ,  an extensive reconcil iat ion of the
previous measurement’s sample trees is  undertaken to
al low the f i t t ing of  individual  t ree and spat ial ly dependent
models. One way to relax this requirement is to define a



minimum diameter, below which the trees are not mapped
or tagged. Not individually identifying any sample trees
is another option.  Or tagging could be chosen over stem-
mapping because physically marking the trees can be
relatively inexpensive while stem-mapping with all its
implicat ions,  such as  having the previous inventory’s
individual tree data available to the field crew, is  relat ively
expensive.

Relaxing the reconciliation requirement could take the
form of requiring only the reconciliation of a subpopula-
t ion of the trees,  such as the largest  or  most  valuable trees,
or  of  only a subsample of  trees. If  only a  subpopulat ion
of trees is  reconciled,  then individual  tree models could
not  be cal ibrated for  the remaining populat ion.
Subsampling from the ent i re  populat ion is  the more
satisfying method of relaxing this requirement. Of
course,  any number of tree subsampling schemes could be
devised for  permanent identif icat ion.

Without much effort ,  we could use the relaxation of both
tree and point relocation and have, as a result ,  a system
that has CFUSPR (sampling with partial replacement)
design qualities. For instance, we could require exact
relocation on a subset  of points and approximate reloca-
t ion on the remaining points  a t  shor t  t ime intervals ,  whi le
requiring exact relocation of all points at a longer time
interval. The degree to which trees are remeasured could
be al lowed to depend on the point  relocation cri ter ion.
We would thereby achieve most  of  the benefi t  of  a CFI
design with respect  to variance of  the growth est imate
without incurring the high cost  of  exactly relocating each
point  a t  each vis i t .

This  plan begs the quest ion:  how close would we have to
get on the approximately relocated plots? The answer to
this question is  case specific,  because i t  depends on the
proport ion of exactly relocated plots ,  the t ime intervals
between measurements,  and the growth rates of the
populations of interest .  Note that  you would even expect
a growth est imator formed on the less than perfectly
remeasured part of the sample (i .e. ,  those trees not
included at  both measurements) to have a smaller variance
than one formed from two spatial ly independent samples
because neighboring trees often share many of the same
characteristics. In addition, through time, if point
relocation errors were randomly distr ibuted,  you would
expect trees that are missed at one remeasurement to have
an equal  probabil i ty of  being measured in a subsequent
time period as trees that were not missed. However, point
relocat ion errors  may not  be randomly distr ibuted.
Further  s imulat ion study is  needed in this  area.

ANALYSIS

Data from a Pseudo-CFI design might be used in several
ways. During the first few measurement periods, the data
would be used only to  adjust  the resul t ing updated
estimates. After the design has been in place for a number
of measurement periods,  the data could be used to directly
calibrate the growth and yield equations.

A long-range analytical plan would be to treat existing
growth and yield est imators as a prior  distr ibution,  collect
data  on mult idimensional ly  def ined subpopulat ions,  and
use it to calibrate the original estimators into final or
posterior  growth and yield est imators for  appropriate
segments of  the subpopulat ions.  This  approach would
help to correct  the erroneous assumption in tradit ional
growth and yield modeling that  forest  growth is  s tat ionary
in the stat is t ical  sense with respect  to t ime and space.

Mixed Estimation

Because we have information from a wide time interval
and want i t  to give us as accurate a picture as possible of
the current state,  we should formally account for the fact
that estimates derived from more recent data will have a
lower variance than those derived from older data.  Theil
(197 1) provides a solution known as mixed estimation,
which was discussed in Van Deusen (1989, 1996). The
latter work is followed directly here.

For simplicity, assume that we have a large sample, a
survey cycle of T t ime periods,  and that we are interested
in sample plots  that  have not  been harvested during the
cycle. A simple model for our sample data at time
t=I,...,Tis:

pt =pu,+Er,

where u;  is an error term with a mean of 0 and a variance
of of  /IQ  , which we would estimate by the usual sample
estimator. Now let  9, represent the prediction obtained
from the growth model at time t and k, = $, - $,-,,  where
t = 2,. ., T . A simple model for the time series might then

be represented as:

is,=&-L$.,+v I

where v, is an error term of zero mean and #  /M,  vari-
ance.

Collect the 3 ‘s  into the vector y = [&, . . ., j+j , the &‘s

into the vector  &  = @ 2, . . . . &.j,  the means into the vector

u  = [p,,....pTj  T and the error terms into the vectors

 = ~~
[ Y..  ,rT] and  [ ,...,vT]~v =  v2
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The matrix representation of the sample data model is
theny=  u+~.

With the defini t ion of  two design matr ices:

1>1 , a TxT matrix in which the diagonal elements are 1
and the off-diagonals are 0 and

-1 1 0 . . . 0

Dz =
0 -1 1 . . . 0

, a T-l by T matrix,
. . .

we can represent the time series as 6 =: D,U + v.
Furthermore, we can write the equations in the
combined form as:

Define:

a n d

c,  =

a
/
23

m23

. . . a 2 T

/m2,

a;’
/ml

With independent periodic inventories,  the off-diagonal
elements in the above two matrices can be assumed to be
zero.  Although convenient ,  this  assumption would not  be
valid or  desirable in the present  context .

The mixed estimator would be:

ti = D1’c l-lD1 + D2’x 2-LD2)
-1

(Dl’c  1-‘Y+D&-l6)
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with a covariance matrix:

v(C) = (DI’C  1-lD1 +D&-lD2
-1

EXAMPLE APPLICATION - NORTHEASTERN
UNITED STATES

The dynamics of  forest  populat ions in the northeastern
spruce-fir forest are due largely to a spruce-budworm
outbreak in the 1980’s. Spruce-budworm effects were not
a factor considered in the growth and yield functions
available for updating the inventory,  and the current
populations are quite different  from any of those upon
which the existing models were built. Therefore, a
Pseudo-CFI sample design was overlaid on an exist ing
systemat ic  design to  cont inuously  moni tor  and possibly
calibrate the dynamic inventory to the changing popula-
t ions .

The design starts  with a permanent randomly placed grid
of points (20 by 5 chain spacing) laid over an entire
region. The grid points are sampled in an extensive
“base” inventory every 15 years,  and subsampled every 3
years. We give details of the procedure below.

Sampling Procedure:

1 .

2.

3.

Photographs of the inventory area will  be interpreted
to determine the stratum and priori ty class of each
stand every 15 years. The stratum classification will
be continuously updated as growth,  s i lvicultural
practices,  or harvesting actions change a polygon’s
stratum membership. Each stratum will be classified
into one of  three spat ial  sampling intensi t ies ,  labeled
high, medium, and low priority.

A permanent base grid of points (5 by 20 chains) will
be randomly placed over the region. All points
fall ing outside of the areas of interest  are ignored, and
the remaining points are numbered from 1 to N. The
grid points actually used in the fill field sample will
be selected every 15 years from these grid points
weighted by priority class. Every point. in every line
will be measured in high priority strata, every even-
numbered point in every line will be measured in
medium priority strata, and every even-numbered
point in every fifth line will be measured in low
priority strata. (The starting line will be chosen at
random from the first five lines.) Since the grid is
permanent,  most of these points will  be relocated as
closely as possible and remeasured at  the next full
inventory in  15 years;  only adjustments  due to
priority class changes will be made.

Every 3 years a systematic subsample of 15 percent
of the sample points will be remeasured. During the
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initial inventory, the sample points will be numbered
from 1 to n beginning at the first sample point of line
1. Then a random number between 1 and 100 will be
chosen as the s tar t ing point .  This  and the next  14
contiguous sample points will be included. The next
85 sample points will be skipped. This pattern will
be repeated unti l  al l  sample points  in the grid have
been worked through. The subsample points will be
located with a GPS and monumented. The 15-point
cluster was chosen because this is  expected to be the
number of  points  on which data can be collected in 1
day (at  least  in Molly  s tocked stands).  All  point-level
and tree-level measurements will be made. “In” trees
greater than 4.5 inches dbh will be measured in a
clockwise direction from due north and tagged with
an identif ication number.

CONCLUSION

Pseudo-CFI is a family of sample designs that exploit
a part icular section of the continuum of potential
degree of  control  in invest igations of  forest  growth
and yield. This family of Pseudo-CFI sample designs
is not  intended to replace controlled experiments for
the development of  growth and yield equations.  I t  is
merely intended as a monitoring mechanism to
facil i tate the identif icat ion of badly behaving popula-
tions and provide a reasonable set  of data that can be
used to calibrate model est imates for these popula-
t ions.  I t  is  arguable that  al l  forest  populat ions are
constant ly moving away from those upon which their
respective growth and yield models were built. What
determines the necessi ty for  model  cal ibrat ion is  the
rate  at  which the populat ion is  moving in relat ion to
the length of t ime that  has elapsed since model
development.  Because this  can not  be known in the
absence of a monitoring effort ,  these ideas can and
should be appl ied to  a l l  dynamic inventory systems,
not  just  to  industr ial  systems.  The reason industr ial
inventory systems have been stressed here is  that
these systems, in general,  have a much greater
investment per acre and have been using dynamic
features longer than public sector inventories.
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